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Duplicate entries in product databases can lead to inaccurate analytics,

degraded user experiences, and increased operational costs. Most

deduplication systems address this problem only after it occurs—running as

periodic batch processes that clean data retrospectively. This delayed

approach allows inconsistencies to persist and propagate.

Recent research in entity resolution has explored advanced methods like

clustering (Martinek et al., 2023), neural hashing (Wang et al., 2024), and

deep semantic matching (Li et al., 2022). However, these techniques are

often complex, resource-intensive, and rarely integrated directly into the

data ingestion pipeline. Even powerful systems like BoostER (Li et al.,

2024) and FlexER (Genossar et al., 2023) are designed for post-hoc

deduplication, leaving a gap between academic advances and real-world

deployment.

Our goal is to bridge this gap by introducing a lightweight, Python-based

product deduplication model that operates at the point of data entry—before

duplicates enter the system. Our solution uses TF-IDF vectorization

combined with fuzzy matching to identify near-duplicate records in real

time. By tackling entity resolution during initial ingestion, our system

moves beyond theoretical proposals to deliver a practical, clean-by-design

data solution.

Accuracy and Throughput

Our initial XGBoost-based model, which relied on blocking by ABV and

product type, reached an overall accuracy of ~83% and proved inefficient

for real-time product ingestion. In contrast, the brand-blocking

approach demonstrated ~99.91% accuracy on the curated brand dataset, a

marked improvement over the machine learning model.

Large-Scale Deduplication

When tested in production with over 42,000 incoming products:

• More than 90% were immediately assigned to correct brand subgroups.

• Approximately 6,000 entries were flagged for human or AI review,

primarily due to new flavors, new brands, or ambiguous naming.

Real-Time Deployment

By storing the JSON brand hierarchy in Amazon S3 and integrating the

deduplication workflow into an AWS Lambda function, our system

processed incoming product records in real time. Each new product was

scored and inserted into the appropriate DynamoDB subgroup entry within

seconds. Unmatched records routed to a “fail” table for further inspection.

Implications

These results confirm that brand-focused blocking significantly

outperforms generic text-similarity classification for alcohol product

deduplication. The approach facilitates faster, more accurate grouping,

while providing an automated escalation path for unrecognized products—

ensuring flexibility as the database of alcoholic beverages evolves.

We currently have a working algorithm that effectively identifies and

merges duplicate entries within alcoholic beverage datasets. By adjusting a

already existing algorithm by (insert author name) we were also able to

increase its overall efficiency. However, currently this only works for

alcoholic beverages, and in the future, we aim to expand its functionality to

support a wider range of product types, especially those with categorical

attributes such as brand, type, and packaging. This generalization will allow

the system to be applied more broadly across diverse ingestion pipelines

and industries.
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Our goal is to create a fast, accurate, and easily deployable deduplication

system that operates in real-time at the point of data ingestion. By catching

duplicates before they enter the database, we aim to reduce the need for

costly and complex cleanup processes downstream. We also want to

improve how the system recognizes and handles new product entries—

especially nuanced variations like flavors or formats within an existing

brand (e.g., a new “White Claw Apricot” that isn’t yet in the database).

While it’s relatively simple to detect entirely new brands, future

development will focus on subgroup recognition and adaptive

classification, allowing the system to automatically create or expand

product families as new variants emerge. Ultimately, we want this system to

scale across a wide range of product categories and data environments.

Data Sources & Preprocessing

We combined two primary data sources:

• A labeled dataset containing ~10,000 alcoholic product entries (names,

ABV, product types, and “duplicate/not-duplicate” labels).

• A 25,000-product brand-labeled corpus scraped from Uber, which was

carefully cleaned and curated. We normalized product names (case-

folded, punctuation removed) and organized them into a JSON file keyed

by brand, each with associated brand variations and subgroups for flavors

or types (see Fig. 1).

Initial Machine Learning Experiment

Our first approach employed an XGBoost classifier (see Fig. 2), generating

features such as TF-IDF and Jaccard similarities, numerical entity overlaps,

fuzzy matching scores, and product-type checks. Despite GridSearchCV

tuning, this model reached only ~83% accuracy and was computationally

heavy for real-time deduplication.

Brand-Based Deduplication System

Recognizing that brand identification was pivotal, we adopted a brand-

blocking approach:

• Brand Matching via Aho-Corasick: Each new product name was

normalized and passed through an Aho-Corasick automaton to quickly

find candidate brands. Tokens from these matches received scores that

scaled with how closely they matched brand variations (see Fig. 3).

• Subgroup & Flavor Scoring: Under each matched brand, subgroups (e.g.,

“Apple Vodka,” “12-Year Whiskey”) were scored via token overlap,

allowing quick assignment to the correct flavor/type subgroup. New or

unrecognized flavors (e.g., a variant not in the JSON) were flagged for

manual or AI-based review.

• AWS Deployment: The final JSON structure was stored in Amazon S3.

A Lambda function invoked the brand-matching routine as products

arrived, placing confirmed duplicates in DynamoDB and routing

unrecognized items (“fail”) to a separate table for further verification.

On-the-Fly Deduplication and Classification of Products in Large-Scale Data Ingestion Pipelines

Figure 1. Excerpt of Grouping JSON Structure

Figure 2. Snippet of Initial XGBoost-Based Code

Figure 3. Key Functions from Brand-Blocking Approach
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