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ABSTRACT

Duplicate entries in product databases can lead to inaccurate analytics,
degraded user experiences, and increased operational costs. Most
deduplication systems address this problem only after 1t occurs—running as
periodic batch processes that clean data retrospectively. This delayed
approach allows inconsistencies to persist and propagate.

Recent research in entity resolution has explored advanced methods like
clustering (Martinek et al., 2023), neural hashing (Wang et al., 2024), and
deep semantic matching (L1 et al., 2022). However, these techniques are
often complex, resource-intensive, and rarely integrated directly into the
data ingestion pipeline. Even powerful systems like BoostER (L1 et al.,
2024) and FlexER (Genossar et al., 2023) are designed for post-hoc
deduplication, leaving a gap between academic advances and real-world
deployment.

Our goal 1s to bridge this gap by introducing a lightweight, Python-based
product deduplication model that operates at the point of data entry—before
duplicates enter the system. Our solution uses TF-IDF vectorization
combined with fuzzy matching to identify near-duplicate records in real
time. By tackling entity resolution during initial ingestion, our system
moves beyond theoretical proposals to deliver a practical, clean-by-design

data solution.
OBJECTIVES

Our goal 1s to create a fast, accurate, and easily deployable deduplication
system that operates in real-time at the point of data ingestion. By catching
duplicates before they enter the database, we aim to reduce the need for
costly and complex cleanup processes downstream. We also want to
improve how the system recognizes and handles new product entries—
especially nuanced variations like flavors or formats within an existing
brand (e.g., a new “White Claw Apricot” that isn’t yet in the database).
While 1t’s relatively smmple to detect entirely new brands, future
development will focus on subgroup recognition and adaptive
classification, allowing the system to automatically create or expand
product families as new variants emerge. Ultimately, we want this system to
scale across a wide range of product categories and data environments.

MATERIALS & METHODS

Data Sources & Preprocessing

We combined two primary data sources:

* A labeled dataset containing ~10,000 alcoholic product entries (names,
ABY, product types, and “duplicate/not-duplicate” labels).

* A 25,000-product brand-labeled corpus scraped from Uber, which was
carefully cleaned and curated. We normalized product names (case-
folded, punctuation removed) and organized them 1nto a JSON file keyed
by brand, each with associated brand variations and subgroups for flavors
or types (see Fig. 1).

Initial Machine Learning Experiment

Our first approach employed an XGBoost classifier (see Fig. 2), generating
features such as TF-IDF and Jaccard similarities, numerical entity overlaps,
fuzzy matching scores, and product-type checks. Despite GridSearchCV
tuning, this model reached only ~83% accuracy and was computationally
heavy for real-time deduplication.

Brand-Based Deduplication System

Recognizing that brand identification was pivotal, we adopted a brand-
blocking approach:

 Brand Matching via Aho-Corasick: Each new product name was
normalized and passed through an Aho-Corasick automaton to quickly
find candidate brands. Tokens from these matches received scores that
scaled with how closely they matched brand variations (see Fig. 3).

* Subgroup & Flavor Scoring: Under each matched brand, subgroups (e.g.,
“Apple Vodka,” “12-Year Whiskey”) were scored via token overlap,
allowing quick assignment to the correct flavor/type subgroup. New or
unrecognized flavors (e.g., a variant not in the JSON) were flagged for
manual or Al-based review.

* AWS Deployment: The final JSON structure was stored in Amazon S3.
A Lambda function invoked the brand-matching routine as products
arrived, placing confirmed duplicates in DynamoDB and routing
unrecognized items (““fail”’) to a separate table for further verification.

10:54

Al

John Doe

Novice Explorer

Special Offers
View Favorites .
Liquor

Beer
Your Persona

Based off your flavor profile... Wine

Hard Seltzer & Alternatives

The Bold Maverick Cider

Sake & Shochu

Already know what you're looking for?

Special Offers

UP TO
v O
c)/6 SELECT WHISKEYS

1Y -
*Ofrp \
e Oy v
n’ . FALL SALEY
4

Next Up: Explorer Badge —
Discover 5 alcohol types
e ——

a/5

£
: [
"“Brand Name Variation"
1,
s

: "100 Nails Ranch Sonoma County (750 ml)",
nwinc " .

: "White Wine",

3 |

: "100 Nails Ranch Sonoma County (756 ml)",
: "100 Nails"

# Feature Extraction Exampl
(p, q):
vec = TfidfVectorizer()
mat = vec.fit_transform([p, ql)
cosine_similarity(mat[©], mat[11)[2]1["]

# Training Process
xgb = XGBClassifier(eval_metric= , random_state=/7)
grid_search = GridSearchCV(

estimator=xgb,

param_grid={

SCAN ME

}, table or update brand data.

cv=,, scoring= , n_jobs=-
)

grid_search.fit(X_train, y_train)

Figure 2. Snippet of Initial XGBoost-Based Code

ahocorasick

{product_name, automaton):

matches = {}
end_idx, (brand, _) automaton.iter(product_name):
# Scoring logic omitted for brevity

matches[brand] = matches.get(brand, ©¢) +

matches

(product_name, json_data):

candidate_brands = match_brand(product_name, prebuilt_automaton)

# Subgroup scoring, flavor detection, etc. (omitted)

best_match

Figure 3. Key Functions from Brand-Blocking Approach
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RESULTS

Accuracy and Throughput

Our initial XGBoost-based model, which relied on blocking by ABV and
product type, reached an overall accuracy of ~83% and proved inefficient
for real-time product ingestion. In contrast, the brand-blocking
approach demonstrated ~99.91% accuracy on the curated brand dataset, a
marked improvement over the machine learning model.

Large-Scale Deduplication
When tested 1n production with over 42,000 incoming products:
* More than 90% were immediately assigned to correct brand subgroups.

* Approximately 6,000 entries were flagged for human or Al review,
primarily due to new flavors, new brands, or ambiguous naming.

Real-Time Deployment

By storing the JSON brand hierarchy in Amazon S3 and integrating the
deduplication workflow into an AWS Lambda function, our system
processed incoming product records in real time. Each new product was
scored and inserted into the appropriate DynamoDB subgroup entry within
seconds. Unmatched records routed to a “fail” table for further inspection.

Implications

These results confirm that brand-focused blocking significantly
outperforms generic text-similarity classification for alcohol product
deduplication. The approach facilitates faster, more accurate grouping,
while providing an automated escalation path for unrecognized products—
ensuring flexibility as the database of alcoholic beverages evolves.

CONCLUSIONS

We currently have a working algorithm that effectively identifies and
merges duplicate entries within alcoholic beverage datasets. By adjusting a
already existing algorithm by (insert author name) we were also able to
increase 1its overall efficiency. However, currently this only works for
alcoholic beverages, and 1n the future, we aim to expand its functionality to
support a wider range of product types, especially those with categorical
attributes such as brand, type, and packaging. This generalization will allow
the system to be applied more broadly across diverse ingestion pipelines
and 1ndustries.
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